

The Neural Network Objects
Johannes Steffens1, Marcel Kunze, Helmut Schmücker

Institut für Experimentalphysik 1, Ruhr-Universität Bochum

Neural Network Objects (NNO) is a C++ class library that implements the most popular
conventional neural networks together with novel incremental models that have been invented
at Bochum University. The package is publicly available and has proven versatile in a broad
range of applications over the past years. In the context of the Pico Analysis Framework NNO
has now been completely revised in order to take full advantage of the ROOT framework for
data management and graphics.

Fig.1: Live updating graphics to control the progress of network training
The example shows the network output for training and test sample (upper row) and the
corresponding error function as the training cycles commence.

1 Now director of software development at Eyematic Interfaces Inc., LA

Architecture

At the time being the package comprises

Supervised Training Models

Multi-Layer Perceptron (TMLP, TXMLP)
Fisher Discriminant (TFD)
Supervised Growing Cell Structure (TSGCS)
Supervised Growing Neural Gas (TSGNG)
Neural Network Kernel (TNNK)

Unsupervised Training Models
Learning Vector Quantisation (TLVQ)
Growing Cell Structure (TGCS)
Growing Neural Gas (TGNG)

The design foresees that all models are derived from the same abstract base class
VNeuralNet. The common base class enforces a unique interface to data management,
training and recall cycles and graphics operations at one central place. VSupervisedNet and
VUnsupervisedNet both inherit from VNeuralNet and take care of the different learning
paradigms. In addition specific implementations of the networks can utilize a plotter to
produce a live updating graphics window to control the training progress: The abstract
VNeuralNetPlotter interface allows to plug in a graphics engine, like the default
TSimpleNeuralNetPlotter.

VNeuralNet

VSupervisedNet VUnsupervisedNet

TXMLP

TFD

TSGCS TSGNG

TNNK

TGCS TGNG

TLVQ

VNeuralNetPlotter

TSimpleNeuralNetPlotter

TMLP

Fig.2: NNO class hierarchy
All networks implement the VNeuralNet interface and use a VNeuralNetPlotter to show their
training progress.

Implementation
The VNeuralNet abstract interface defines the following contract for the implementation of
specific neural network models:

// Abstract interface for all networks
virtual void AllocNet() = 0;
virtual void InitNet() = 0;
virtual void WriteText() = 0;
virtual void WriteBinary() = 0;
virtual void ReadText() = 0;
virtual void ReadBinary() = 0;
virtual Double_t* Recall(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0;
virtual Double_t Train(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0;

AllocNet acquires resources and is executed during network construction. InitNet sets up the
network weight matrix. WriteText persists the network as an ASCII file, WriteBinary
produces a binary file. The corresponding reading versions are able to regenerate a network in
the state it was at the time when it was saved. The Recall method takes an input vector as
parameter and returns the corresponding network output. The Train function takes a pair of
input/output vectors, performs a Recall, modifies the weight matrix to better adapt the input
probability density function and returns the squared error of the sample.

Besides the abstract interface, concrete methods have been implemented to support the
execution of training cycles and to set training parameters:

// Training and testing
Double_t TrainEpoch(TDataServe *server, Int_t nEpoch=1);
Double_t TestEpoch(TDataServe *server);
void BalanceSamples(Bool_t yesNo = kTRUE);
virtual void SetMomentumTerm(Double_t f);
virtual void SetFlatSpotElimination(Double_t f);

TDataServe is a mini database to support management of input/output vector relations. It
allows to partition datasets into training and test samples, retrieve arbitrary samples and
shuffle a data set prior to a new training cycle. TrainEpoch and TestEpoch are functions to
train and test networks with a complete set of vectors out of a TDataServe object. The
BalanceSamples option allows to have equal training statistics for good and bad samples,
independent of the number of vectors per sample. The application of a momentum term might
lead to faster convergence in some applications by noting the direction of gradient descent,
the flat spot elimination might improve training progress in regions where the derivatives of
the error matrix are near zero.

Each network implementation has to implement the abstract interface mentioned above. As an
example for the integration of an independent neural network implementation into the context
of NNO we have managed to support J.P. Ernenwein�s Neural Network Kernel: The TNNK
interface yields seamless access to the Neural Network Kernel in the scope of NNO.

NetworkTrainer
Network training requires to identify pairs of input vectors and output vectors out of a dataset
of good and bad samples to describe the problem at hand. It usually takes a certain amount of
time to select suiting quantities and assemble corresponding training and test files prior to
network training and write a corresponding training program or macro. However, it turns out
that ROOT is performing enough to allow for interactive training of large networks with large
data samples out of arbitrary ROOT files in one go. In that spirit a NetworkTrainer program
has been written on the basis of the NNO package. NetworkTrainer assists to

�� Assemble training and testing data sets out of ROOT trees
�� Define the network architecture
�� Define a training schedule
�� Persist networks
�� Generate C++ code to perform network recall

At the time being NetworkTrainer reads an ASCII steering file when it launches (a GUI is in
preparation). The steering file knows the following directives:

Parameter Type
I = input
O = output
H = hidden
C = cells

Description

fisher vector
(I O) Multi-layer perceptron (0 hidden layer)

mlp vector
(I H O) Multi-layer perceptron (1 hidden layer)

xmlp vector
(I H H O) Multi-layer perceptron (2 hidden layers)

tnnk vector
(I H H O) Multi-layer perceptron (Neural Network Kernel)

sgng vector
(I C O) Supervised growing neural gas

sgcs vector
(I C O) Supervised growing cell structures

gng vector
(I C) Growing neural gas

gcs vector
(I C) Growing cell structures

lvq vector
(I C) Learning vector quantization

start int First training epoch
stop int Last training epoch
epoch int Number of training samples per epoch
test int Number of test samples per epoch
networkpath string Directory to save the trained networks
datapath string Directory to look up data files
file string ROOT training file containing good and bad samples
pro string ROOT training file containing good samples (1D output only)

con string ROOT training file containing bad samples (1D output only)
tree string ROOT tree that acts as source to assemble the vectors
cut string ROOT TFormula for preselection of samples
input string Input vector, ROOT TFormulae (separated by colon)
output string Output vector, ROOT TFormulae (separated by colon)
transfer string Transfer function

(TR_FERMI,TR_LINEAR,TR_LINEAR_BEND,TR_SIGMOID)
momentum float Momentum term
scale float Global scale factor to apply to input layer
inscale vector Scale factors to apply to input layer
outscale vector Scale factors to apply to output layer
autoscale bool Determine scale factors to apply to input layer
plot bool Produce graphics output (1D output only)
balance bool Enforce presentation of equal number of good and bad samples

A sample steering file for training of a selector to separate different charged particles in a
typical HEP experiment could look like the following:

Training of PIDSelectors with NNO

#define the network topology
xmlp 7 15 10 1
transfer TR_FERMI
momentum 0.2
balance true
plots true
test 10000
start 1
stop 200

#define the data source
datapath ../Data
networkpath ../Networks
file PidTuple1.root
file PidTuple2.root

#set up the input layer (use branch names)
tree PidTuple
cut mom>0.5&&dch>0&&dch<10000
input mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd
autoscale true

#set up the output layer (use branch names)
#Particles pid = {electron=1,muon,pion,kaon,proton}
output abs(pid)==3

The example above reads two input files, assembles a data server using all samples surviving
the cut and runs for 200 training epochs with a 7-15-10-1 multi-layer perceptron using all
available samples. In the course of the training after each epoch a persistent network file

NNOxxxx.TXMLP is saved into the Networks directory, where xxxx denotes the epoch
number. At the end, NetworkTrainer produces a template recall function that can be plugged
into another program that wants to make use of a network. For the above example the file
RecallTXMLP.cpp looks like is shown below for illustration purposes:

// TXMLP network trained with NNO NetworkTrainer at Fri Apr 27
// Input parameters mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd
// Output parameters abs(pid)==3
// Training files:
//../Data/PidTuple1.root
//../Data/PidTuple2.root

#include "PAFNNO/TXMLP.hh"

Double_t* Recall(Double_t *invec)
{
 static TXMLP net("TXMLP.net");
 Float_t x[7];
 x[0] = 0.76594 * invec[0]; // mom
 x[1] = 2.21056 * invec[1]; // acos(theta)
 x[2] = 0.20365 * invec[2]; // svt
 x[3] = 2.2859 * invec[3]; // emc
 x[4] = 1.75435 * invec[4]; // drc
 x[5] = 0.00165 * invec[5]; // dch
 x[6] = 0.85728 * invec[6]; // ifr
 return net.Recall(x);
}

References

The Neural Network Objects (20 kB), J.Steffens, M.Kunze
A Comparison between the Performance of SGNG and MLP (240 kB), R.Berlich, M.Kunze
Neural Network Application, J.P.Ernenwein
The Pico Analysis Framework, S.Berger, M. Kunze, H.Schmücker

	Architecture
	References

